Whirlpool Washer Transmission Repair


A few months ago our whirlpool washer wouldn’t spin. It did everything else, but it was pretty worthless without the spin function because the clothes would just be sitting at the bottom of it completely soaked after a wash. Of course, the first thing I did was go to Google and type in “Whirlpool washer won’t spin” and got a lot of hits on some great websites. Most of them were repair websites and forums sponsored by kind individuals who freely share their knowledge such as fixitnow.com. Others are sponsored by companies who sell parts to DIY homeowners, like repairclinic.com.

The forums always suggest the most common and easy fixes first, like the lid switch, which wasn’t my problem. So I had to start disassembling the washer because the next item on the list was the coupling on the motor. Fortunately, these websites have directions on how to get the washer open, which takes very little effort, as long as you know which screws to remove and in what order. I knew that the coupling was unlikely to be the failed item because the agitator was still working and it would be unlikely that a failed coupling would allow that to work. Then I started looking at the clutch/brake mechanism and that also looked OK. Finally, I figured it had to be the transmission, one of the hardest items to remove. I had the entire washer torn apart and moved to the kitchen because our laundry room is more of an alcove in the entryway between the garage and the kitchen.

After pulling the transmission, I was faced with the prospect of taking it apart, knowing it would be filled with heavy oil.

To pull your washer’s transmission, you need to remove a bolt at the top of the shaft holding it to the agitator. To expose that bolt, you have to pull off the plastic cap on the top of agitator as well as another translucent seal below it. Note the translucent cap has an o-ring seal on it. Make sure to put it back in properly when you re-assemble the washer to keep water out of that bolt’s compartment or it will rust and fuse with the shaft.

I carefully took out all the screws holding on the transmission’s top cover and drained the oil into a jar. This was going to a really messy job and so I put on some vinyl mechanics gloves.

Whirlpool washer Transmission image

I was amazed at the complexity of the transmission. It has to perform several functions, all without any input other than the direction the motor. For instance, it has to agitate, spin, and also go into neutral without any shifters or solenoids. The same motor is simultaneously running the pump from a portion of the drive shaft that comes out the other end. The transmission uses a rather complex plate of pawls, gears, and cams on something called the ‘rack retainer’. I was trying to simulate spinning the motor forward and backward and thus I could shift it from spin mode to agitate mode, but I couldn’t get it into spin. It was then that I realized that something called a ‘shoulder pawl stud’ was broken off at its threads and the rack retainer was spinning freely. This pawl stud works as an axle and also as a way of getting the plate to spin along with the spin gear, but it was broken with its threads embedded in the main gear. So I had to find a new pawl stud and figure out a way to extract the threads from the hole they were in. I was pretty sure that the threads had some locking compound on them and they weren’t going to come out easily.

Whirlpool washer Transmission inside image

The pawl stud wasn’t available as a separate part, but there was something called the Neutral Drain Pack from Repairclinic.com which included a lot of parts, including 2 different studs, since Whirlpool evidently beefed up the threads for the newer models, no doubt because it was a weak point. The upside to that is that if I ruined the threads extracting the broken stud, I could drill and tap it for the larger stud and newer rack retainer. So as my wife headed off to the laundry mat with a load of wash, I order the parts on line. The neutral drain kit was about $17 + $6 shipping. In the meantime, I tried to drill the screw threads out of the main drive gear. I broke a drill bit doing it, but got enough of a hole down through the middle of the broken screw shaft that I thought I’d have success with an ‘easy out’. I took it into work and borrowed an easy out and with the help of an arbor press to apply pressure to the easy out, I extracted the broken screw without doing any damage to the threads.

A few days later, the parts arrived. The kit contained a lot more parts than I needed. I replaced all the old parts with new ones, figuring after 15 years of service, there was no point in reassembling things with old parts when I had new ones right there. Getting everything back together required some head scratching, but after thinking it through, I was able to manually operate the transmission and check the agitate and neutral modes.

After a little fiddling everything went back together and I ran a cycle through without clothes and was very happy when the spin mode began working again. Now it’s been working for a few years, I figured that the $23 and my time was worth it because if I had a repairman do it, I’m sure it would have been over $300 because he would have likely replaced the whole transmission. That would be beyond the value of the washer. It was also better than throwing it away and buying a new one for somewhere between $600-900. I generally don’t fix things myself just for the savings because if you consider my time, it’s not really saving me that much. I do it more for the educational experience and the satisfaction of knowing that if it ever breaks again, I can choose to either fix it myself or buy a new one, if we think it’s time for its retirement.

I’ve included the meager set of instructions for the Neutral Drain Pack in pdf format here.

UPDATE: 2009-01-07 I continue to get comments and emails on this posting. I just got one asking about getting the transmission apart and so I’ve uploaded a new picture that shows what a messy job this is. Click on it for a higher resolution image.

image of the opened whirlpool washer transmission

The snap ring (shown next to the screw driver laying on the newspaper) needs to be removed from the shaft to get the top cover off of it. I can’t recall if I had the proper snap ring pliers or if I used needle nose pliers ‘in reverse’ to spread open the snap ring by its holes. I managed to save all the oil and reuse it afterward, but if you lose some or it looks dirty you can get more from an appliance service center or use SAE 90 weight gear oil if you can’t find a service center.

There is also the possibility that your washer is caked with mud, so if the basket won’t spin, it may be clutch that is worn or can’t overcome the friction of mud caked between the basket and the tub like the image below:

whirlpool washer basket and tub

This photo was sent to me by a reader who found mud stuck between the basket and tub. His washer wouldn’t spin because the clutch couldn’t overcome the friction caused by the mud. If your spin cycle is intermittent, then this could be the potential cause of it.

Another resource you may find useful if you’ve gotten this far is this .pdf file for the service manual for a Whirlpool direct drive washer. It’s got the schematics, troubleshooting instructions, parts list, etc., for the whirlpool washer.

CES 2007


I was supposed to go to CES this year but as it got closer to the show, there was some last minute reshuffling someone else ended up going in my place. There was another guy in the group who just wanted to go more than I did. CES can be a grueling week, especially if you have to do a lot of booth duty as well as setup and break down and I was scheduled to be working every day. Then, just as I got ready to go to CES, the calls start coming in for meet ups with other companies and if I had gone, I’d be booked to the point where I wouldn’t have any time to just look around. I’d like to go there just once and be able to just walk around without having to do it at a frenetic pace.

One of my friends, Kevin Colburn, who escaped from his HP cubicle earlier this year to do his own thing got some coverage from a few gadget blogs for his Island Words software along with his Gamecycles. Specifically, Slashgear and Cruchgear both gave GameCycles.com some mentions, although no link love. Gizmodo and Engadget were too busy gushing over the iPhone at Mac World to cover anything else. Good job Kevin, I hope it generate some good sales leads for your gaming/exercise products.

Andy McCaskey of Slashdot Review has been doing a great job of allowing me to experience the show virtually by podcasting interviews and show coverage each day. I was almost interviewed last year by Andy, but we ended up chatting for a while instead, because I wasn’t comfortable going on record talking about the controversy brewing between the Blu-ray and HD-DVD format war.

All the major news outlets were favorably impressed with HP’s announcement of the MediaSmart Server based on Windows Home Server. There is a lot of coverage, links, videos, etc., over on Charlie Kindel’s blog.

Who Really Killed the Electric Car?


It seems that in order to provide news or information that both stimulates and entertains, it’s necessary to present the facts so that when you’re done telling the story, there’s no doubt in audience’s mind who is praiseworthy and who is guilty. When you’ve rounded up all the suspects and made your accusations and assigned blame, you need to have the audience to feel totally convinced, self-righteous, and indignant about some obvious injustice. If you present both sides of an argument and try to remain neutral, it leaves the audience confused, emotionally conflicted, and feeling like they didn’t learn anything useful. Worse yet, you’ve lost out on an opportunity to recruit activists to your cause. This biased approach to some of the news shows and so-called documentaries is the secret to the mass appeal of entertainment shows that masquerade as ‘news’. I’m talking about shows like 60 Minutes, or 20/20 and, of course, anything ever made by Michael Moore.

And so it is with the movie, ‘Who Killed the Electric Car‘. The film’s creators have appointed themselves as judges, jury, and executioners of a whole slate of perpetrators, including not only the usual suspects, namely, our government and the clueless and greedy corporations, but also the majority of the film’s potential viewers.

As an engineer, I’ve often wondered when the internal combustion engine would be replaced by something more efficient and environmentally friendly, and it would seem that the electric motor would be just the ticket. An electric motor is simpler and more efficient than an internal combustion engine and doesn’t require nearly as much periodic maintenance.

An internal combustion engine wastes about 70% of the fuel’s energy content because it produces so much waste heat in the process of providing the mechanical work. About half of the waste heat goes out the tailpipe and the other half is removed from the engine via its cooling system. An electric motor only wastes about 10% of its energy as heat. So you’d think that electric cars with 90% efficient motor would have replaced 30% efficient internal combustion engines a long time ago, but they haven’t. Why not?

In the movie, Who Killed the Electric Car, the writers would like you to think that it’s a result of greedy corporations and conspiracies between the government, Big Oil, and car manufacturers, but in reality, those entities cannot control whether or not a technology is adopted by the public. That same conspiracy would have to occur simultaneously in every country in the world. You cannot legislate principles of physics into existence, although sometimes you can take credit for it when the laws are passed at the same time as the technological innovations that allow them to be implemented. A law to mandate adoption of technology that doesn’t exist, or technology that isn’t practical, is doomed to failure.

The failure of the electric car to capture an economically viable share of the market is due to it being a 90% solution, that is, it solves 90% of the transportation problem, but falls short in the critical 10% of transportation needs that are solved by conventional cars. It’s the ability to fulfill the critical 10% needs that often determines the success or failure of a product.

For example, it’s very common to see people commuting alone in vehicles that will comfortably carry 4 adults. Is the solution to that problem to force people into carpools or to require them to drive a 1 or 2-seat vehicle unless they can fill the other seats during their commutes? The problem with a 2-seat vehicle is that sometimes a person needs 4 or more seats, and a vehicle that has only 2 seats is of no use to them when that need arises. The additional cost of the fuel required by a larger vehicle that has extra seats is offset by the convenience of having them when they are needed.

Consider the often maligned SUV. Most of them have more capacity than their owners need 90% of the time, but when a person needs that space, which may only be a few times per year, the SUV can handle it. Also, even though your need for the SUV’s 4WD feature may be required a few percent of the overall driving time, it really pays for itself when it allows you to get home safely instead of being stuck by the side of the road in a driving snowstorm.

An electric car has limited range because its batteries have less than 1% of the energy density of gasoline. And it takes hours to recharge them vs. minutes to fill a gasoline powered car. Granted, 90% of your driving may fall within the range of an electric car on a daily basis, but what happens when you want to take it on vacation where you may be driving 2 or 3 times that range in a single day? The vehicle would be of no use to you in that situation.

One of the biggest driving forces behind the electric car is ostensibly its more favorable impact on the environment. It’s often called a “zero emissions” vehicle. Greenhouse gases such as carbon dioxide and its effects on global warming are cited as the major concern. Carbon dioxide is a byproduct of the combustion process of hydrocarbon fuels and the majority of electricity generation also produces this same greenhouse gas. There are a few ‘renewable’ sources of electric energy such as solar, hydroelectric, and wind that produce no greenhouse gases, but they account for a very small portion of the total generating capacity of the U.S. today. Here is the breakdown of electrical generating capacity in the U.S as of 2005:

Coal 50%
Petroleum 3%
Natural Gas 18%
Nuclear 19%
Hydroelectric 7%
Other 3%

I should mention that nuclear power produces no greenhouse gas in generating electricity, but due to public sentiment, there will be no more nuclear generating capacity added in the U.S. . It also has its own environmental issues that have yet to be solved such as long term storage of the radioactive waste it produces. It’s also not ‘renewable’ since the fuel sources are finite.

Around 70% of electricity produced in the U.S. is from CO2-emitting processes. Energy conversion is more efficient in power plants than in cars, as high as 60%, compared with 30% or less for internal combustion engines, but there are transmission losses so that by the time the energy gets to the end customer, another 7% is lost. And of course, there is the cost of the generating and transmission infrastructure that has to be added to the cost of electricity as well as battery charging inefficiencies. Still, even when you account for these inefficiencies, electric cars can come out ahead of the efficiency equation, offering approximately 43% conversion efficiency on fossil fuel vs. 30% you get from conventional cars. They also can take advantage of some other relatively minor efficiencies (~5%) such as regenerative braking and wasting no energy idling while waiting at stop lights, provided you’re not running the air conditioning or heater.

But remember earlier when I mentioned that the energy density of batteries is less than 1% of fossil fuels? The energy it takes to move a car around is very much dependent on its weight. The General Motors EV-1, which is the subject of much of the film, weighed only about 1600 lbs without its batteries which in itself is an achievement. It had an additional 1200 lbs of batteries which gave it a curb weight of around 2800 lbs. On a 2800 lb car, 15 gallons of gas comprises only a small percentage (~3%) of its weight and would be enough to propel it for at least 450 miles assuming a very conservative 30 mpg fuel economy. But in an electric car, the equivalent energy storage, even taking into account the efficiency of the electric propulsion system, would require you to carry more than 6000 lbs of batteries. Imagine what
that would do to the fuel economy. In the case of the EV1, to compensate for this disparity in energy density, they cut the range by more than 80% to around 75 miles, and carried only 1200 lbs of batteries instead which was still a hefty 40% of its curb weight. The EV-1 held around 80 MJ of energy in its batteries. This is the equivalent energy provided by roughly a half gallon of gasoline. A recharge, which took up to 5 hours, required approximately $2 worth of electricity.

In experiments with the EV-1, it got between 60 and 80 mpg when retrofitted with internal combustion engines, which is to be expected for a car with many energy saving refinements such as an extremely low drag coefficient, weight saving materials like an aluminum frame, and low rolling resistance tires. However, the one feature that saved it most of its weight was the decision to make it a two-seater. An equivalent 4-seat model would have been limited to only half the range of a two-seater.

The battery technology in the EV-1 changed several times, going from lead-acid to NiMH. This had the effect of increasing the energy density from about .5% to .8% the equivalent of gasoline. It should come as no surprise that rechargable batteries have limited a useful life. About once every 3 to 4 years I have to replace my car, motorcycle, and airplane starter batteries and I would expect that to be the same on an electric car. The EV1 suggested a full replacement every 25,000 to 35,000 miles. All rechargeable batteries such as lead-acid, Nicad, Li-ion, and NiMH have a limited life span both in time and in the number of charge/discharge cycles although it can be shortened by abuse and some cells will no doubt fail prematurely. The capacity of the batteries also declines over their useful lives. The EV1 held 26 batteries and imagine the sticker shock you’d get when they all needed to be replaced. Even if they could be purchased for the same price as an equivalent starter battery, say around $100 each, you’d be faced with a bill of $2600 every two or three years, say nothing of what 1200 lbs of batteries per vehicle every few years would do to landfills. In fact, battery life and battery replacement was never mentioned in the movie. It’s somewhat ironic that the batteries were the only cause that was given a ‘not guilty’ verdict by the movie when, in fact, battery technology has more culpability than any single cause in the killing of the electric car. If it were possible to store electrical energy with the same density as gasoline, the electric car may well have replaced the internal combustion cars a long time ago.

The killing of the electric car was not the result of some well orchestrated conspiracy by nefarious forces. It is a simple case of trying to push something on consumers by appeasing do-gooders who have a very superficial understanding of technology and the environmental problems they are trying to solve.

I think GM should have received more respect by the film makers for their efforts instead of being dragged through the mud after having spent more than a billion dollars trying to push the limits of technology that just wasn’t ready for mass adoption.

When the technology is ready, electric car will appear, but for now, no amount of whining and assigning blame will change what happened to the EV1.